Monetizing Gas of a Giant High Helium and Nitrogen Gas Reservoir – Amur Gas Processing Plant

Marcus Lang
EVP Natural Gas Plants
Linde Engineering, Germany

Igor Afanasiev, General Director Gazprom Pererabotka Blagoveshchensk
Boris Slutskiy, Project Director NIPIGas
Florian Schmid, Project Director Linde Engineering
Unconventional gas:
• natural gas which cannot be produced, processed or used in a conventional manner

Inert Limits (N₂ and CO₂)
• most North American and European pipeline systems require a maximum inert content of 3% in order to ensure a stable Wobbe-Index and proper performance of burners and gas turbines operated from the pipeline system. The Russian norm specifies a maximum of 2.5%.

Main Options to Monetize High Nitrogen Reservoir
• dedicated pipeline system (e.g. Groningen, NL) or dedicated consumer (e.g. power plant, NH₄ plant)
• blending with other low N₂ gas sources
• nitrogen rejection

Nitrogen Rejection Technology
• cryogenic technology is only referenced choice for large scale N₂-rejection. Membrane or adsorptive technology not feasible.
• inlet gas of cryogenic processes normally needs to be virtually free of H₂O (< 1 ppm), CO₂ (< 50 ppm) and tolerates only small amounts of H₂S, HHC’s
Power of Siberia Pipeline
• connects gas rich Eastern Siberia with Far East and populous China
• link between high N₂ Chayanda field in Yakutia and the border crossing near Blagoveshchensk (1ˢᵗ section)
• tie-back the Kovykta field in Irkutsk Region (2ⁿᵈ section)
• pipeline, Amur Gas Processing Plant and a new nearby gas petrochemical complex are key elements of Gazprom’s Eastern Gas Program to boost the economic development of the Russian Far East.
Unusual Process challenge

- **Rejection of** N_2 from app. 8% to less than 2% in **large diameter international gas transmission line** (38 million m³/year)

Building Blocks and Commercial Products of Amur GPP

- **cryogenic rectification**: liquid CH$_4$ is produced at the bottom of a large column (implicit LNG plant) and vaporized against other process streams to obtain sales gas
- options: integration of N_2-rejection into a LNG plant or (if not feasible) **separation of commercial co-products** rather than selling at zero or heating value with sales gas
- production of C$_2$H$_6$, NGL’s and liquid helium is synergetic compared to stand-alone production, N_2 used as utility or vented with less than 100 ppm CH$_4$
- **development of a world-scale gas based petrochemical complex**

Dominant cost drivers

- compression
- removal of H$_2$O, CO$_2$< and S
Excursion: Helium

- **exclusively produced from natural gas**, coincides with high N₂, however N₂ not necessarily coincides with He
- economically producible concentrations of He natural gas range from 0.05 to 0.30 mol-%
- 2nd lightest element to H₂
- smallest atomic radius
- lowest boiling point at 4.2 K
- high thermal conductivity
- most stable inert gas
- current global He market ≈ 170 million m3/a (6.500 bcf/a), growth rate 1.5-2% p.a.
- presently three sources (BLM, Exxon Wyoming, Qatar) represent 80% of global production

![Applications Pie Chart](chart.png)
Minimize Compression
- feed and sales gas tie-in at similar pressure, need of a sales gas compression apparent
- no further compression in sales gas and He-path
- max. pressure at the inlet of the sales gas compression
- single column N₂-rejection process transfers N₂/He concentrate at a significantly higher pressure compared to double column, overcompensating thermodynamic malus
- external heat pump system for cryogenic duty and integration of duties

Minimize Pre-treatment
- feed gas free of H₂O and CO₂ to avoid freeze out
- specific proprietary process design to prevent freeze-out of CO₂ up to 3.000 ppm and hereby avoiding amine wash units and large dryer units
Project Status

- selection of Linde technology by Gazprom and award of EPSS-contract for **five construction phases** by NIPIGaz Pererabotka (general contractor) in 2015
- 1st phase: **two gas processing** (C₂H₆/NGL/NRU) **trains and one Helium train**
- 2nd to 5th phase: **additional four gas processing and two Helium trains**
- 1st phase engineering works beyond 90% model review, first documents issued for construction
- PO’s for major equipment/material placed, fabrication of key equipment advanced
- first material arriving in summer 2017
- 2nd phase started with **time-lag to optimize** engineering, procurement, transport resources, construction work
- When completed **Amur GPP will be one of the world's largest gas processing and the world's largest He-plant** with nameplate capacities of 42 billion m³/a of natural gas, 60 million m³/a of He respectively
Site and Logistic

- **remote greenfield area**, entailing construction of jetty, roads, warehouses and rail access to site
- **transport** of oversize & heavy lifts across Amur and Zeya river within limited navigation window
- **draft of 110 cm** requires a special design barges, tugs and floater system
- Linde site services during construction, commissioning, start-up
Conclusions

• **Development and production of a large high N₂ gas reservoir and export** to a natural gas market with infrastructure designed to low inert levels **poses a particular technical challenge**

• **Industrial scale nitrogen rejection requires methane condensation** (implicit LNG plant) and entails significant investments

• **Synergies through co-production of C₂H₆, NGL’s and He** as a starting point of **high value chains for the benefit of the national and regional economy**, such as the petrochemical and helium value chain

• **Pioneering natural gas export from Russia to China** – connecting the resource rich Russian Far East with the populous Chinese mainland – represents a **historic milestone in the history of natural gas infrastructure** and will have **long-lasting economic and environmental benefits**